
ORIGINAL PAPER

A temperature–concentration (T–X) phase diagram
calculated using the mean field theory for liquid crystals

Hamit Yurtseven & Selami Salihoglu & Huseyin Karacali

Received: 10 October 2012 /Accepted: 18 January 2013 /Published online: 24 February 2013
# Springer-Verlag Berlin Heidelberg 2013

Abstract Phase-line equations for smectic–hexatic phase
transitions in liquid crystals were derived using the Landau
phenomenological theory. In particular, second-order tran-
sitions for the smectic-A–smectic-C (SmA–SmC) and
hexatic-B–hexatic-F (or HexI) transitions were studied and
the tricritical points for these transitions were located. The
calculated phase-line equations were fitted (using experi-
mental data for various liquid crystals) to construct a gen-
eralized T–X phase diagram. It was shown that the T–X
phase diagram calculated from the free energy adequately
describes the observed behavior of liquid crystals during
smectic–hexatic transitions.

Keywords Mean field theory . Phase diagram . Liquid
crystals

Introduction

Transitions among isotropic liquid, nematic, and smectic
phases have been the subject of a number of studies, as
reported in the literature. The transitions that occur be-
tween isotropic liquid and nematic (IN), between nematic
and smectic-A (NA), between smectic-A and smectic-C

or C* (AC or AC*), and also between smectic-C (or C*)
and crystal (solid) phases as the temperature is decreased have
been investigated both experimentally and theoretically in
many liquid-crystalline systems. Thermodynamic and some
dynamic quantities have been measured or calculated at var-
ious temperatures, pressures, and concentrations for these
transitions in liquid crystals. Phase diagrams (T–P or X–T)
have also been constructed based on the experimental meas-
urements and theoretical models.

Transitions from smectic phases (untilted SmA and tilted
SmC) to hexatic phases (untilted HexB and tilted HexF or
HexI) have also been investigated for various liquid-
crystalline materials. It has been reported [1–8] that some liquid
crystals freeze into plastic crystals (CrE or CrB) at low temper-
atures close to their HexB–HexF (or HexI) transition.

Transitions among the various smectic and hexatic
phases can be classified as either first or second order,
resulting in the existence of triple points and tricritical
points (TCPs). Phase lines among the phases SmA, HexB,
and HexF (or HexI), which are first-order lines, meet at a
triple point. Phase lines among the phases SmA, SmC, and
Hex F (or Hex I) also give rise to a triple point for these first-
order smectic–hexatic transitions. Although most smectic–
hexatic transitions are first order, there are also second-order
phase lines between untilted (SmA) and tilted (SmC) smec-
tic phases and between untilted (HexB) and tilted (HexF or
HexI) hexatic phases. The point at which first-order and
second-order lines intersect for both SmA–SmC and
HexB–HexF (HexI) transitions is known as the tricritical
point (TCP), as shown in a generalized phase diagram [8]
(Fig. 1). The phase diagram for binary mixtures of 650BC
and 40.8 has also been obtained [3, 4]. This exhibits untilted
phases: SmA, HexB, CrB, and CrE.

This phase diagram includes smectic (SmA and SmC)
phases which become hexatic (untilted HexB and tilted
HexF and HexI) phases. The vertical axis is (T − TBOO),
where TBOO is the smectic–hexatic transition temperature. For
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fixed concentrations of various liquid crystals, the unoriented
axis is the composition variable X [8] with varying temper-
atures along the T-TBOO axis, as shown in Fig. 1. For a
homologous series such as n(10) OBC, the composition X
can take integer or noninteger values. When n is nonintegral,
as in 3.73(10) OBC (Fig. 1), the nonintegral value denotes a
binary mixture of two adjacent homologs (73 wt % 4(10)
OBC). Below the x-axis, all vertical lines represent transitions
from untilted (HexB) and tilted (HexF and I) to plastic crystal
phases (CrB, CrG, and the rigid crystal K). The dotted lines in
Fig. 1 are used for second-order transition lines and solid lines
indicate first-order transition lines. TCPs are positioned along
the curve between HexB and tilted HexF (or HexI) and along
the curve between SmA and SmC.

It has been proposed [8] that the SmA–HexB transition
can be considered weakly first order, with some smeared,
minor latent heat effects rounding the the Cp peaks. Given
that the effective heat capacity (Cp) exponent of αeff ranges
between 0.5 and 0.65 [9, 10], and that between 0.15 and
0.25 [11, 12], it was concluded that SmA-HexB transitions
exhibit 3D-XY critical behaviour. [8]. Among the hexatic
phases that exhibit long-range bond orientational order
(BOO) but short-range plane positional order, it has been
suggested [5, 8] that the HexB phase is a fluctuation-
induced phase that is sensitive to positional order. For tilted
phases (SmC and HexF or HexI), the tilt angle θ can couple
with the bond orientational order parameter y, and the tilt

can modify the bond orientational order parameter (BOO) in
Sm C and Hex F (or Hex I) phases. This coupling between θ
and y has been studied in some theoretical models [13], as
have herringbone order [14], positional density [15, 16], and
smectic layer fluctuations [17]. For plastic crystal phases
near HexB–HexF (or HexI) transitions, it has been sug-
gested that there is short-range HexF (or HexI) order in the
HexB phase and that there is short-range HexB order in the
HexF (or HexI) phase [8].

Within the framework of the mean field model introduced
in this study, the following points motivated us to investi-
gate smectic–hexatic phase transitions in binary mixtures of
liquid crystals:

(i) Phase coexistence can be described in a mixture of
liquid crystals that occurs in a finite temperature range
at a fixed concentration in the smectic–hexatic transi-
tion model.

(ii) The concentration dependence of the latent heat can be
obtain in a similar way we have obtained the concen-
tration dependence of the Gibbs free energy for the
smectic-hexatic transition here

(iii) Features of the TCP that occurs for the smectic–hex-
atic transition and also the mean field to tricritical
crossover behavior can be characterized by the quad-
rupole–quadrupole interactions (by the coupling term
ψ2θ2 in the free-energy expansion).

(iv) The critical behavior of the susceptibility χ and the
specific heat CP between the smectic and hexatic phases
and near the TCP can be described in binary mixtures of
liquid crystals. This is achieved by minimizing the free
energy with respect to the order parameters (the bond
orientational order parameter y and tilt angle θ). Thus,
the temperature and concentration dependences of both
χ and CP can be obtained by minimization, and the
temperature and concentration dependences of y and θ
can also be obtained. Therefore, the critical behavior of
the order parameters (y and θ), the susceptibility χ, and
the specific heatCP can be considered to be temperature
and concentration dependent.

(v) Similarly, the temperature and concentration dependen-
ces of other thermodynamic quantities such as the ther-
mal expansivityαp and the isothermal compressibility κT
can be derived using the mean field model, and the
critical behavior of each near the smectic–hexatic tran-
sitions for mixtures of liquid crystals can be described.

(vi) By choosing the concentration dependence of the cou-
pling constant (c of y2θ2 in the free-energy expansion)
appropriately, the order of the transition (first order,
second order, or tricritical) between smectic and hexatic
phases can be characterized for mixtures of liquid crys-
tals. As an example, in the case of mixtures of ferro-
electric liquid crystals, X=0 corresponds to a pure

Fig. 1 Generalized smectic–hexatic phase diagram [8]. Equations 3.2
and 3.6 were fitted to the solid (first-order) and dotted (second-order)
lines; the values of the fitted parameters are shown in Tables 1 and 2.
The light vertical lines represent temperature ranges over which the
SmA and hexatic phases are stable. All the tilted hexatic phases shown
are HexF except for those of 3.73(10) OBC and 4(10) OBC [8].
Tricritical points (TCP’s) are denoted by small circles between the
solid and dotted lines fort he SmA-SmC and HexB-HexF (Hex
I)transitions
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ferroelectric material which exhibits a first-order tran-
sition, X =1 is the concentration of a nonferroelectric
material which exhibits a second-order transition, and
0<X <1 corresponds to a transition between first order
and second order or tricritical (for a fixed X value), as
we have shown previously [18].

(vii) By determining the concentration dependence of the
temperature shift, ΔT=TC − T0, where T0 is the tran-
sition temperature and TC is the experimental tem-
perature, the order of the transition (first order,
second order, or tricritical) can be characterized, as
we have shown previously [18]. For a second-order
transition, ΔT=0.

(viii) The coupling of the order parameters with the con-
centration is an important determinant of the phase
behavior and the order of the transition.

(ix) The correlation between the orientational order pa-
rameter and the enthalpy (linear or nonlinear) can be
established for hexatic–smectic transitions in binary
mixtures of liquid crystals.

In the study described in the present paper, we expanded
the free energy for smectic–hexatic transitions in terms of the
bond orientational order (BOO) parameter y and the tilt angle
θ. By minimizing the free energy with respect to the order
parameters (y and θ), we derived the phase-line equations for
SmA–HexB, SmA–HexF, SmA–SmC, HexB–HexF, and
SmC–HexF transitions. These phase-line equations were fit-
ted to experimental data [8] for various liquid crystals that
exhibit smectic–hexatic transitions. In this treatment, quadrat-
ic coupling between the order parameters y and θ was con-
sidered in the free-energy expansion, just as we did for SmA–
SmC* transitions in previous studies [18–20]. The coefficient
of the quadratic term y2 was assumed to depend on the
temperature and the concentration for various binary mixtures
of liquid crystals, as observed experimentally, and all other
coefficients in the free-energy expansion were taken to be
constant. Thus, a generalized T-X diagram was constructed
for smectic–hexatic transitions by fitting the phase-line equa-
tions to experimental data [8]. We have calculated the phase
diagrams for the liquid crystals near the nematic-SmA-SmC
(NAC) [21, 22] and the nematic-SmA-SmC* (NAC*) [23]
points previously. Very recently, we derived [24] phase-line
equations for first-order SmA–HexF, SmA–HexB, SmA–
SmC, HexB–HexF, and SmC–HexF transitions in liquid crys-
tals and calculated a generalized smectic–hexatic phase dia-
gram using experimental data [8]. In the present study, we
derived the phase-line equations for the first-order transitions
stated above and for second-order SmA–SmC and HexB–
HexF transitions by calculating the T–X phase diagram using
mean field theory. However, aside from the SmA–HexB tran-
sition, the first-order SmA–HexF, SmA–SmC, HexB–HexF,
and SmC–HexF transitions were treated differently in the

work reported in the present paper compared to the approach
used in our previous work [24], although we used the same
experimental data [8] in the present study as was used in our
previous study [24]. Additionally, in the present work, we
calculated the Gibbs free energy as a function of concentration
for smectic–hexatic transitions of a few liquid crystals used as
examples.

In the next section, we derive the phase-line equations
according to the Landau phenomenological theory. In the
section after that, we provide our calculations and results.
We then discuss those results and draw conclusions based
on them in subsequent sections.

Theory

The free energy can be expanded in terms of the order param-
eters according to the Landau phenomonological theory. By
taking the temperature and pressure (or concentration)
dependences of the coefficients in the free-energy expansion,
thermodynamic quantities can be predicted near phase tran-
sitions. Using these dependences of the coefficients, the
phase-line equations can be derived for the transitions studied.
By predicting the first-order and second-order phase lines,
temperature–pressure (T–P) or the temperature–concentration
(T–X) phase diagrams can be constructed.

In this study, we construct a generalized T–X phase
diagram for smectic liquid crystals that form hexatic
phases upon cooling, using the Landau phenomenolog-
ical theory. The first-order and second-order phase-line
equations for the relevant smectic–hexatic transitions are
derived from the free-energy expansion. In particular,
for SmA–SmC and HexB–HexF transitions, the TCP at
which the first-order and second-order phase lines inter-
sect is located. The phase-line equations derived here
are fitted to the experimental T–P phase diagram for the
smectic–hexatic transitions of various liquid crystals [8].
The values of the fitted parameters and the coordinates
of the TCPs for the transitions studied are determined.
The relationship between the Gibbs free energy of mix-
ing and the concentration—which is used to construct
the T–X phase diagram via the Landau phenomenolog-
ical theory—is also demonstrated here, using the SmA–
HexB transitions for liquid crystals of 3(10) OBC and
PHOAB (Fig. 1) as examples (see Fig. 2).

Below, we derive the phase-line equations of various
smectic–hexatic transitions.

SmA–HexB transition

The free energy of the SmA phase is

FA ¼ 0: ð2:1Þ
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The free energy of the HexB phase can be expressed in
terms of the order parameter y as

FB ¼ a2y
2 þ a4y

4 þ a6y
6; ð2:2Þ

where a2 > 0, a4 < 0 and a6 > 0 for the first-order SmA–
HexB transition. The first-order condition gives

FA ¼ FB; ð2:3Þ
so that

a2y
2 þ a4y

4 þ a6y
6 ¼ 0: ð2:4Þ

By minimizing the free energy FB with respect to the
order parameter y, we get

a2 þ 2a4y
2 þ 3a6y

4 ¼ 0: ð2:5Þ

From Eqs. 2.4 and 2.5, we have

y2 ¼ � a4
2a6

: ð2:6Þ

By inserting Eq. 2.6 into Eq. 2.4, we then get

a4
8a26

a24 � 4a2a6
� � ¼ 0 ð2:7Þ

or

a24 ¼ 4a2a6: ð2:8Þ
This is the phase-line equation for the SmA–HexB

transition.

SmA–HexF transition

The free energy of the HexF phase is

FF ¼ a2y
2 þ a4y

4 þ a6y
6 þ b2θ

2 þ b4θ
4 þ b6θ

6 þ cy2θ2;

ð2:9Þ
where a2 > 0, a4 < 0, a6 > 0, b2 > 0, b4 < 0, and b6 > 0.

The first-order condition is

FA ¼ FF: ð2:10Þ
This gives

a2y
2 þ a4y

4 þ a6y
6 þ b2θ

2 þ b4θ
4 þ b6θ

6 þ cy2θ2 ¼ 0:

ð2:11Þ
By minimizing FF with respect to ψ, we obtain

a2 þ 2a4y
2 þ 3a6y

4 þ cθ2 ¼ 0: ð2:12Þ
Also, by minimizing FF with respect to θ, we obtain

b2 þ 2b4θ
2 þ 3b6θ

4 þ cy2 ¼ 0: ð2:13Þ
From Eq. 2.12, we have a solution for θ:

θ2 ¼ � 1

c
a2 þ 2a4y

2 þ 3a6y
4

� �
: ð2:14Þ

From Eq. 2.13, we have also a solution for y :

y2 ¼ � 1

c
b2 þ 2b4θ

2 þ 3b6θ
4

� �
: ð2:15Þ

By substituting Eq. 2.14 into Eq. 2.15, we then get

A1y
8 þ A2y

6 þ A3y
4 þ A4y

2 þ A5 ¼ 0; ð2:16Þ
where

A1 ¼ �27a26b6 c3
�

A2 ¼ �36a4a6b6 c3
�

A3 ¼ 6 a6b4c� 2a24b6 � 3a2a6b6
� �

c3
�

A4 ¼ 4a4b4c� 12a2a4b6 � c3ð Þ c3
�

A5 ¼ 2a2b4c� 3a22b6 � b2c2
� �

c3
�

: ð2:17Þ

Let us rewrite Eq. 2.16 in terms of the B coefficients:

B1y
8 þ B2y

6 þ B3y
4 þ B4y

2 þ B5 ¼ 0: ð2:18Þ

By choosing B1=1, the B coefficients can be related to
the A coefficients as follows:

B2 ¼ A2
A1

¼ 4a4
3a6

B3 ¼ A3
A1

¼ 2
9a26b6

2a24b6 þ 3a2a6b6 � a6b4c
� �

B4 ¼ 1
27a26b6

12a2a4b6 � 4a4b4cþ c3ð Þ
B5 ¼ 1

27a26b6
3a22b6 þ b2c2 � 2a2b4c
� � : ð2:19Þ

630

0

20

40

60
F

B

X-XBOO

Fig. 2 Gibbs free energy of the hexatic-B (HexB) phase as a function
of the concentration X (calculated according to Eq. 3.8) for the SmA–
HexB transitions of the liquid crystals mentioned in Fig. 1
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We can also rewrite Eq. 2.16 in terms of the C
coefficients:

C1y
8 þ C2y

6 þ C3y
4 þ C4y

2 þ C5 ¼ 0: ð2:20Þ
By taking C1=a6, the other C coefficients can be related

to the B coefficients as follows:

C2 ¼ a6B2 ¼ 4a4
3

C3 ¼ a6B3 ¼ 2
9a6b6

2a24b6 þ 3a2a6b6 � a6b4c
� �

C4 ¼ a6B4 ¼ 1
27a6b6

12a2a4b6 � 4a4b4cþ c3ð Þ
C5 ¼ a6B5 ¼ 1

27a6b6
3a22b6 þ b2c2 � 2a2b4c
� � : ð2:21Þ

Let us choose C5=0. This gives

3a22b6 þ b2c
2 � 2a2b4c ¼ 0: ð2:22Þ

By inserting C5=0 into Eq. 2.20, we obtain the free
energy expanded up to y6 as

C1y
6 þ C2y

4 þ C3y
2 þ C4 ¼ 0: ð2:23Þ

Let us also choose C4=0. From Eq. 2.21, we have

12a2a4b6 � 4a4b4cþ c3 ¼ 0: ð2:24Þ

Using Eq. 2.22, we then get the coupling constant as

c ¼ a2b4 � a22b
2
4 � 3a22b2b6

� �1 2=
h i

b2= : ð2:25Þ

By assuming that the discriminantΔ ¼ 0 in Eq. 2.25, we
find that

b24 ¼ 3b2b6: ð2:26Þ

The coupling constant then becomes

c ¼ a2b4 b2= : ð2:27Þ

Inserting Eq. 2.27 into Eq. 2.24 gives

a22b
3
4 þ 12a4b

3
2b6 � 4a4b

2
2b

2
4 ¼ 0: ð2:28Þ

Since it is not a simple task to satisfy Eqs. 2.25 or 2.27
and 2.28 simultaneously, we can make both C4 and C5 zero
by choosing a6 to be a very large number (see Eq. 2.21).
Hence,

a6 � 1: ð2:29Þ
In that case, Eq. 2.20 becomes

C1y
4 þ C2y

2 þ C3 ¼ 0: ð2:30Þ
This equation can be solved for y2 as

y2 ¼ �C2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2 � 4C1C3

p
2C1

: ð2:31Þ

Since a4 is negative,

� C2

C1
¼ 2 a4j j

3a6
i0: ð2:32Þ

In Eq. 2.31, the discriminant becomes

Δ ¼ C2
2 � 4C1C3 ¼ 8a6

9b6
b4j jc� 3a2b6ð Þ; ð2:33Þ

meaning that

Δ1 2=

2C1
¼ 1

2a1 2=
6

8

9b6
b4j jc� 3a2b6ð Þ

� �1 2=

: ð2:34Þ

When Eqs. 2.32 and 2.34 are substituted into Eq. 2.31 by
taking the positive solution, we get

y2 ¼ 2

3

a4j j
a6

þ 1

2a1 2=
6

8

9b6
b4j jc� 3a2b6ð Þ

� �1 2=

: ð2:35Þ

Since a6 is very large, we can ignore the first term in Eq.
2.35. Hence,

y ffi 1ffiffiffi
2

p
a1 4=
6

8

9b6
b4j jc� 3a2b6ð Þ

� �1 4=

: ð2:36Þ

Equation 2.36 can be rewritten as

y ¼ 1ffiffiffi
2

p 8

9

b4j jc
a6b6

� 8a2
3a6

� 	1 4=

: ð2:37Þ

If we ignore the second term in Eq. 2.37 because a6 is
very large, we have

y ¼ 2

9

b4j jc
a6b6

� 	1 4=

; ð2:38Þ

where the coupling constant c is positive. In order to get the
maximum value ofy (≅1), we choose the ratio in Eq. 2.38 to be

b4j jc a6b6= ffi 9 2= ð2:39Þ
By inserting Eq. 2.38 back into Eq. 2.14, we then obtain

θ2 ¼ � a2
c
� 2

3

b4j j
b6

þ 2 a4j j
c

2

9

b4j jc
a6b6

� 	1 2=

: ð2:40Þ

Consequently, by choosing a2 to be finite, c > 0, and a6
and a4 to be large, we can express the order parameters y
and θ as shown in Eqs. 2.38 and 2.40, respectively. Nothing
that a2 is small, and choosing b6 to be large, just as we did
for a6 , we can ignore the first two terms in Eq. 2.40. θ2 can
therefore be written as

θ2 ¼ 2 a4j j
c

2

9

b4j jc
a6b6

� 	1 2=

: ð2:41Þ

Using these expressions for y (Eq. 2.38) and θ2

(Eq. 2.41) in Eq. 2.11, we then obtain the phase-line
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equation for the SmA–HexF transition. After some algebra,
we find that

2

3

a4j j b4j jc
a6b6

� 8

9

a4j j2 b4j j2
ca6b6

þ a2 þ 2b2 a4j j
c

� 	
2

9

b4j jc
a6b6

� 	1 2=

þ a6 þ 8b6 a4j j3
c3

 !
2

9

b4j jc
a6b6

� 	3 2=

¼ 0:

ð2:42Þ

SmA–SmC transition

The free energy of the SmA phase is zero, as before. The
free energy of the SmC phase can be expressed as

FC ¼ c2y
2 þ c4y

4 þ c6y
6 þ d2θ

2 þ d4θ
4 þ d6θ

6

þ cy2θ2; ð2:43Þ
where ψ is very small. In Eq. 2.43, c2 > 0, c4 < 0, c6 > 0,
d2 > 0, d4 < 0, and d6 > 0.

Minimizing FC with respect to y gives

c2 þ 2c4y
2 þ 3c6y

4 þ cθ2 ¼ 0: ð2:44Þ
Also, minimizing FC with respect to θ gives

d2 þ 2d4θ
2 þ 3d6θ

4 þ cy2 ¼ 0: ð2:45Þ
By taking a6 to be a large number, Eqs. 2.44 and 2.45

yield

y ¼ 1ffiffiffi
2

p 8

9

d4j jc
a6d6

� 8c2
3c6

� 	1 4=

; ð2:46Þ

as given by Eq. 2.37 for the SmA–HexF transition. By
taking |d4|, d6 to be finite, c2 to be small, and c6 to be very
large, we can ignore the second term in Eq. 2.46. We then
get

y ¼ 2

9

d4j jc
c6d6

� 	1 4=

; ð2:47Þ

where c is positive, similar to Eq. 2.38. Inserting this value
of y into FC (Eq. 2.43) gives

FC ¼ c2 2
9

d4j jc
c6d6


 �1 2=
þ c4 2

9
d4j jc
c6d6


 �
þ c6 2

9
d4j jc
c6d6


 �3 2=

þd2θ
2 þ d4θ

4 þ d6θ
6 þ cθ2 2

9
d4j jc
c6d6


 �1 2= :

ð2:48Þ
For the second-order part of the SmA–SmC transition,

the coefficient of θ2 should be zero. Hence, from Eq. 2.48,
we have

d2 þ c
2

9

d4j jc
c6d6

� 	1 2=

¼ 0: ð2:49Þ

This is the phase-line equation for the second-order part
of the transition between the SmA and SmC phases. At the
tricritical point (TCP), we should have

d4 ¼ 0: ð2:50Þ
For the first-order part of the SmA–SmC transition, we

insert the value of y given by Eq. 2.47 into Eq. 2.44. We
then get

θ2 ¼ � c2
c
� 2

3

d4j j
d6

þ 2 c4j j
c

2

9

d4j jc
c6d6

� 	1 2=

; ð2:51Þ

similar to Eq. 2.40 for the SmA–HexF transition. By choos-
ing

d4j jc c6d6 ffi 9 2== ; ð2:52Þ
in Eq. 2.47 (as given in Eq. 2.39), we obtain the maximum
value of y (≅1), similar to Eq. 2.41 for the SmA–HexF tran-
sition. Thus, the order parameters y and θ are expressed by
Eqs. 2.47 and 2.51, respectively, where c2 is finite (positive),
c > 0, and c6 and c4 are large. Since c2 is small, and by
choosing d6 large as a6, the first two terms in Eq. 2.51 can
be ignored. The θ2 expression can then be written as

θ2 ¼ 2 c4j j
c

2

9

d4j jc
c6d6

� 	1 2=

: ð2:53Þ

If we use the expressions for y (Eq. 2.47) and θ2

(Eq. 2.53) in Eq. 2.43 with

FA ¼ FC ¼ 0; ð2:54Þ
which gives

c2y
2 þ c4y

4 þ c6y
6 þ d2θ

2 þ d4θ
4 þ d6θ

6 þ cy2θ2 ¼ 0;

ð2:55Þ
we can derive the phase-line equation for this transition. We
find that

2

3

c4j j d4j jc
c6d6

� 8

9

c4j j2 d4j j2
cc6d6

þ c2 þ 2d2 c4j j
c

� 	
2

9

d4j jc
c6d6

� 	1 2=

þ c6 þ 8d6 c4j j3
c3

 !
2

9

d4j jc
c6d6

� 	3 2=

¼ 0:

ð2:56Þ
This is the first-order part of the SmA–SmC transition.

HexB–HexF transition

We first obtain the second-order phase line between the
HexB and HexF phases. The free energy FB of the HexB
phase is given by Eq. 2.2. Also, the free energy FF of the
HexF phase is given by Eq. 2.9. By minimizing the free
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energy FF with respect to the order parameters y and θ, we
get Eqs. 2.12 and 2.13, respectively. Using the same treat-
ment given for the SmA–HexF transition, we end up with an
expression for the order parameter y (Eq. 2.38) for the
HexB–HexF transition. By inserting Eq. 2.38 into the free
energy FF expression (Eq. 2.9), we find

FF ¼ a2 2
9

b4j jc
a6b6


 �1 2=
þ a4 2

9
b4j jc
a6b6


 �
þ a6 2

9
b4j jc
a6b6


 �3 2=

þb2θ
2 þ b4θ

4 þ b6θ
6 þ cθ2 2

9
b4j jc
a6b6


 �1 2= ;

ð2:57Þ
similar to Eq. 2.48 for the SmA–SmC transition. For the
second-order phase line of the HexB–HexF transition, the
coefficient of θ2 in Eq. 2.57 should be equal to zero. Hence,
we have

b2 þ c
2

9

b4j jc
a6b6

� 	1 2=

¼ 0; ð2:58Þ

which is essentially the same relation (Eq. 2.49) as given for
the SmA–SmC transition. At the TCP, we should have

b4 ¼ 0: ð2:59Þ
Now we can derive the first-order phase line between the

HexB and HexF phases, as we did for the SmA–SmC transi-
tion. θ2 can be obtained from Eq. 2.12 for the HexF phase, as
shown by Eq. 2.14. Similarly, y2 can be obtained from Eq.
2.13 (see Eq. 2.15). Using the first-order condition that

FB ¼ FF ¼ 0; ð2:60Þ
which gives

b2 þ b4θ
2 þ d6θ

4 þ cy2 ¼ 0; ð2:61Þ
it is possible to determine the phase-line equation for the
HexB–HexF transition. By minimizing the free energy FB of
the HexB phase (Eq. 2.2) with respect to y , we get Eq. 2.5,
which can be solved for y2. This gives

x ¼ y2 ¼ �a4 þ a24 � 3a2a6
� �1 2=

3a6
: ð2:62Þ

When we substitute Eq. 2.62 into Eq. 2.61, we get

b2 þ b4θ
2 þ b6θ

4 þ cx ¼ 0: ð2:63Þ
Since a2 is small and a6 is large, we can ignore the second

term in Eq. 2.62, which gives

y2 ¼ �a4
3a6

: ð2:64Þ

Equation 2.63 then becomes

b6θ
4 þ b4θ

2 þ b2 � a4c

3a6

� 	
¼ 0; ð2:65Þ

which can be solved for θ2 as

θ2 ¼ � b4
2b6

þ
b24 � 4 b2 � a4c

3a6


 �
b6

h i
2b6

1 2=

: ð2:66Þ

By choosing b2 to be small, b6 to be large, and a4 and b6
to be finite, the second term in Eq. 2.66 can also be ignored,
meaning that θ2 becomes

θ2 ¼ �b4
2b6

: ð2:67Þ

Finally, by substituting the expressions for y2 (Eq. 2.64)
and θ2 (Eq. 2.67) into Eq. 2.63, we find that

12b2a6b6 � 6b4a6 þ 3b24a6 � 4a4b6c ¼ 0: ð2:68Þ
This is the first-order phase line for the HexB–HexF

transition.

SmC–HexF transition

The free energies of the HexF and SmC phases are given by
Eqs. 2.9 and 2.43, respectively, by assuming the same
coupling constant c. In the SmC phase, y is very small,
whereas it is large in the HexF phase.

When we minimize FF (Eq. 2.9) with respect to the order
parameters y and θ, we get Eqs. 2.12 and 2.13, respectively,
as before. Using the expressions for θ2 (Eq. 2.14) and y2

(Eq. 2.15) for the HexF phase, and following the same
procedure as given for the SmA–HexF transition, we obtain
y for the HexF phase (Eq. 2.38). Similarly, using the same
procedure as employed for the SmA–SmC transition, we can
find y for the SmC phase (Eq. 2.47). When we substitute
Eq. 2.38 into Eq. 2.14, we obtain an expression for θ2 (given
by Eq. 2.40), which can be reduced to Eq. 2.41 for the HexF
phase. Similarly, for the SmC phase, our final expression for
θ2 is given by Eq. 2.53. We then insert Eqs. 2.38 and 2.41
into FF (Eq. 2.9) and Eqs. 2.47 and 2.53 into FC (Eq. 2.43).
Using the first-order condition that

FF ¼ FC; ð2:69Þ
we finally obtain the phase-line equation between the SmC
and HexF phases. After some algebra, FF is obtained as

FF ¼ a2 þ 2 a4j jb2
c

� 	
2

9

b4j jc
a6b6

� 	1 2=

þ a4j j

� 1þ 4 a4j jb4
c2

� 	
2

9

b4j jc
a6b6

� 	

þ a6 þ 8 a4j j3b6
c3

 !
2

9

b4j jc
a6b6

� 	3 2=

: ð2:70Þ
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Similarly, FC can be obtained as

FC ¼ c2 þ 2 c4j jd2
c

� 	
2

9

d4j jc
c6d6
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2

9
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2

9

d4j jc
c6d6

� 	3 2=

: ð2:71Þ

Using Eq. 2.69, the first-order phase-line equation for the
HexF–SmC transition is given by
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ð2:72Þ

Calculations and results

The phase-line equations that we derived as shown above
were used to calculate a generalized smectic–hexatic (T–X)
phase diagram for various liquid crystals that were measured
experimentally [8]. By assuming that the temperature and
concentration dependences of the coefficients exhibited the
functional forms given in the phase-line equations for the
transitions studied here, it was possible to fit the phase-line
equations to the observed data and thus determine the fitted
parameters. The coordinates of the tricritical points (TCPs)
were also determined for the SmA–SmC and HexB–HexF
transitions, which exhibit both first-order and second-order
features. The SmA–HexB, SmA–HexF, and SmC–HexF
transitions are only first order.

SmA–HexB transition

The phase-line equation for the SmA–HexB transition is
given by Eq. 2.8. By assuming that the coefficient a2
depends on the temperature and concentration as

a2 ¼ a20 T � TBOOð Þ þ a21 X � XBOOð Þ2; ð3:1Þ
and that a4 and a6 are constant, the phase line described by
Eq. 2.8 can be written as follows:

T � TBOO ¼ a0 þ a1X þ a2X
2: ð3:2Þ

In Eq. 3.1, a20 and a21 are constant. In Eq. 3.2, the coef-
ficients α0, α1, and α2 are constant. TBOO represents the
transition temperature for the bond orientational order
(BOO) parameter y. Equation 3.2 was fitted to the experi-
mental data for the SmA–HexB transition [8]. Since the SmA–
HexB transition line occurs at T−TBOO=0 [8], as shown in
Fig. 1, the coefficients are all equal to zero (α0=α1=α2=0).

SmA–HexF transition

In the phase-line equation given by Eq. 2.42 for the SmA–
HexF transition, we assumed that the temperature and con-
centration dependence of coefficient a2 is given by Eq. 3.1,
whereas that of coefficient b2 can be written as

b2 ¼ b20 T � TBOOð Þ þ b21 X � XBOOð Þ2: ð3:3Þ
By choosing the coefficients a4, b4, a6, b6, and c in Eq.

2.42 to be constant, it was possible to fit the phase-line
equation (Eq. 2.42) to the experimental T−TBOO vs. X phase
diagram [8] shown in Fig. 1. Just as for the SmA–HexB
transition, the SmA–HexF transition occurs at T−TBOO=0,
which leads to the coefficients α0=α1=α2=0.

SmA–SmC transition

Since the SmA–SmC transition involves first- and second-
order phase lines, which meet at the TCP, both phase-line
equations were considered in this work. First, the phase-line
equation of the second-order part (Eq. 2.49) was fitted to the
experimental data (Fig. 1) according to Eq. 3.2 with coef-
ficients α0, α1, and α2. We assumed that the coefficients
depend on temperature and concentration as

d2 ¼ d20 T � TBOOð Þ þ d21 X � XBOOð Þ2; ð3:4Þ
where d20 and d21 are constants. Upon fitting Eq. 2.49 to the
observed data along the transition line between the SmA and
SmC phases [8], the coefficients α0, α1, and α2 were deter-
mined (during this fitting process, d4, d6, and c were taken to
be constant in Eq. 2.49). The values of the fitted parameters
α0, α1, and α2 for the second-order part of the SmC transi-
tion are given in Table 1. The temperature and concentration
coordinates for the TCP are also indicated in Table 1.

For the first-order line of the SmA–SmC transition, the
phase-line equation (Eq. 2.56) was fitted to Eq. 3.2, just as
we did for the second-order part of this transition. In Eq.
2.56, we assumed that

c2 ¼ c20 T � TBOOð Þ þ c21 X � XBOOð Þ2; ð3:5Þ
and that the temperature and concentration dependence of
the coefficient d2 is given by Eq. 3.4. In both equations, c20,
c21, d20, and d21 are constant. When Eq. 2.56 was fitted to
Eq. 3.2, the coefficients α0, α1, and α2 were determined,
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and these values are shown in Table 1. In this table, we also
give the values of the temperature and concentration at the
TCP for the first-order part of the SmA–SmC transition.
Those values are the same as those for the second-order part
of this transition (Table 1).

HexB–HexF transition

Just like the SmA–SmC transition, the HexB–HexF transi-
tion is both first and second order. Both phase lines coincide
at the TCP. For the second-order line described by Eq. 2.58,
the temperature and concentration dependence of the coef-
ficient b2 was assumed here to be the same as Eq. 3.5,
whereas the coefficients b4, a6, b6, and c were taken to be
constant. Thus, by expressing Eq. 2.58 in the same form as
Eq. 3.2, we obtained

T � TBOO ¼ b0 þ b1X þ b2X
2: ð3:6Þ

Under the assumption given above, Eq. 3.6 was fitted to the
observed data for the second-order part of the HexB–HexF
transition (Fig. 1). The values of the fitted parameters β0, β1,
and β2 are given in Table 2. We also provide the coordinates
of the TCP for the second-order part of the HexB–HexF
transition in this table.

Regarding the first-order part of the HexB–HexF transi-
tion, we wrote the phase-line equation (Eq. 2.68) in the same
functional form as Eq. 3.6, based on the assumption that the
coefficient b2 depends on the temperature and concentration
as described by Eq. 3.3, and that the coefficients b4, a6, b6,
and c are all constant. By fitting Eq. 3.6 to the observed data
for the first-order part of the HexB–HexF transition (Fig. 1),
the values of the fitted parameters β0, β1, and β2 were
determined, as tabulated in Table 2. We also give the coor-
dinates of the TCP for the first-order part of the HexB–HexF
transition in this table.

SmC–HexF transition

The first-order SmC–HexF transition is described by the
phase-line equation (2.72). As we did for the previous tran-
sitions, we assumed the following temperature and concentra-
tion dependences (shown in parentheses) of the coefficients:
a2 (Eq. 3.1), b2 (Eq. 3.3), c2 (Eq. 3.5), and d2 (Eq. 3.4) in Eq.
2.72. We also assumed that the coefficients a4, a6, b4, b6, c4,
c6, d4, and d6, as well as the coupling constant c, were
constant. Under this assumption, the phase-line equation for
the SmC–HexF transition (Eq. 2.72) was rewritten in
the form of Eq. 3.6. When Eq. 3.6 was fitted to the
experimental phase line at T−TBOO=0, the fitted param-
eters were obtained as β0=β1=β2=0, similar to the
SmA–HexB and SmA–HexF transitions (Fig. 1).

Gibbs free energy as a function of concentration

The T–X phase diagram can be deduced from the relation-
ship between the Gibbs free energy of mixing and the
concentration, as stated above. In the Landau phenomeno-
logical theory, the Gibbs free energy can be expanded in
terms of the order parameters. By minimizing the Gibbs free
energy with respect to the order parameters and assuming
the temperature and concentration dependences of the coef-
ficients given in the free-energy expression, the T–X phase
diagram can be constructed. As an example, in the case of
smectic-A–hexatic-B (SmA–HexB) phase transitions in liq-
uid crystals (Fig. 1), the variation of the Gibbs free energy
with the concentration can be obtained within the frame-
work of the mean field theory. Using the Gibbs free energy
of the hexatic-B (HexB) phase (Eq. 2.2) along with the
following concentration dependence of the coefficient a2
(Eq. 3.1):

a2 ¼ a21 X � XBOOð Þ2; ð3:7Þ

Table 1 Values of the parameters obtained upon fitting Eq. 3.3 to the experimental data [8] for the phase transition indicated. The coordinates of
the tricritical point (TCP) are also given. TBOO is the smectic–hexatic transition temperature

SmA–SmC α0 (K) α1 (K/wt %) α2 (K/wt %)2 T − TBOO (K) X (wt %)

First order 31.82 −7.30 0.33 0.86 16.74

Second order −46.26 2.82 0 0.86 16.74

Table 2 Parameter values obtained by fitting Eq. 3.6 to the experimental data [8] for the phase transition indicated. The coordinates of the TCP are
also given. TBOO is the smectic–hexatic transition temperature

HexB–HexF β0 (K) β1 (K/wt %) β2 (K/wt %)2 T − TBOO (K) X (wt %)

First order −206.74 56.87 −3.91 −6.05 6.06

Second order −1085.5 353.78 −28.99 −6.25 6.06
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the relationship between the Gibbs free energy (FB) and
the concentration X was obtained. In Eq. 3.1, T − TBOO=0
(Eq. 3.2) because of the SmA–HexB transition line for the
liquid crystals of 3(10) OBC, PHOAB, 3.73(10)OBC, and
4(10) OBC (Fig. 1), as also pointed out in the section
“SmA–HexB transition.” Thus, the Gibbs free energy
(Eq. 2.2) can be written as follows using Eq. 3.7:

FB ¼ A X � XBOOð Þ2; ð3:8Þ

where A is another constant given by

A ¼ � a21a4
2a6

1þ a24
4a6

� 	
; ð3:9Þ

since we assume that a4 and a6 are constants. Equation 3.8
gives the quadratic dependence of the Gibbs free energy
(FB) on the concentration (X), as plotted in Fig. 2 for the
SmA–HexB transitions of the liquid crystals given above
(Fig. 1). Similarly, the Gibbs free energy as a function of
concentration can be obtained for the SmA–HexF transition
(see the section “SmA–HexF transition”), the SmA–SmC
transition (see “SmA–SmC transition”), the HexB–HexF
transition (see “HexB–HexF transition”), and the SmC–
HexF transition (see “SmC–HexF transition”). Thus, the
concentration dependences of the Gibbs free energy for both
HexF (FF by Eq. 2.9) and SmC (FC by Eq. 2.43) can be
obtained. FF and FC can then be plotted as a function of X
for liquid crystals that exhibit the phase transitions shown in
Fig. 1.

Discussion

In this work, phase-line equations were derived by expand-
ing the free energy in terms of the order parameters (the
bond orientational order parameter y and the tilt angle θ)
using the Landau phenomenological theory. Quadratic cou-
pling between y and θ in the free-energy expansion was
considered. When quadratic coupling (θ2y2) was applied,
the bond orientational order (BOO) paremeter y was taken
to be very small in SmC phase, whereas in the hexatic-F (or
Hex I) phase this parameter was large for the smectic-hex-
atic transitions studied here. The phase-line equations were
fitted to the experimental phase lines for various liquid
crystals exhibiting smectic–hexatic phase transitions, as
shown in Fig. 1. As stated above, among the smectic–
hexatic transitions studied here, SmA–SmC and HexB–
HexF (tilted hexatic) transitions contain both first-order
and second-order features, with phase lines that meet at
the tricritical point (TCP), which we determined in this work
(Tables 1 and 2). Regardless of whether the first-order or the
second-order phase line was used to calculate the TCP for
the SmA–SmC transition, the TCP was located at the same

temperature and concentration coordinates (Table 1). The
temperature coordinate of the TCP for the HexB–HexF
transition differed by about 0.20 K depending on whether
it was calculated using the first-order or second-order phase
line (Table 2).

In the fitting procedure, the phase-line equations for the
SmA–HexB (Eq. 2.8), SmA–HexF (Eq. 2.42), and SmA–
SmC (Eqs. 2.49 and 2.56) transitions were reduced to Eq.
3.2 by assuming the temperature and concentration depend-
ences of the coefficients a2 (Eq. 3.1), b2 (Eq. 3.3), c2
(Eq. 3.5), and d2 (Eq. 3.4). We also reduced the phase-line
equations for the HexB–HexF (Eqs. 2.58 and 2.68), and
SmC–HexF (Eq. 2.72) transitions to Eq. 3.6 by assuming
the temperature and concentration dependences of the coef-
fiicents a2 (Eq. 3.1), b2 (Eq. 3.3), c2 (Eq. 3.5), and d2
(Eq. 3.4). These assumptions were made because it was
difficult to fit the phase-line equations in their derived form
to the experimental data due to the large number of param-
eters in these equations. By reducing the number of param-
eters in the phase-line equations to just three (Eqs. 3.2 and
3.6), we were able to calculate the T-X phase diagram foe
liquid crystals that exhibit smectic-hexatic phase transitions
to the data in the experimental phase diagram (Fig. 1).

Since we derived the functional forms of the order
parameters ψ and θ from the free-energy expansion for
smectic–hexatic transitions in various liquid crystals, it
was then possible to predict their temperature and concen-
tration dependences, as stated above. In particular, for the
SmA–HexB transition, the y2 expansion (Eq. 2.6) indicated
that the bond orientational order parameter is constant on the
phase line, since a4 and a6 were taken to be constant. This
was not the case for the SmA–HexF (tilted hexatic phase)
transition (see Eqs. 2.14 and 2.15 for the tilt angle θ and the
bond orientational order parameter y, respectively). For this
transition, both order parameters were found to depend on
the temperature and concentration because of the assumed
functional forms of a2 (Eq. 3.1) and b2 (Eq. 3.3). This was
also seen for the SmA–SmC transition, as both y (Eq. 2.46)
and θ (Eq. 2.51) were obtained as functions of c2, which
depends on the temperature and concentration (see Eq. 3.5).
Note that these order parameters were assumed to be con-
stant in the simplified forms of y (Eq. 2.47) and θ (Eq. 2.53)
for the SmA–SmC transition. Similarly, the order parame-
ters y (Eq. 2.62) and θ (Eq. 2.66) for the HexB–HexF
transition were found to be dependent on the temperature
and concentration due to the coefficients a2 (Eq. 3.1) and b2
(Eq. 3.3). Again, they were taken to be constant on the phase
line of the HexB–HexF transition in their reduced forms
(Eqs. 2.64 and 2.67). Finally, for the SmC–Hex F transition,
the order parameters y (Eq. 2.15) and θ (Eq. 2.14) were
shown to be temperature and concentration dependent be-
cause of the functional forms of the coefficients a2 (Eq. 3.1)
and b2 (Eq. 3.3).
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We also investigated the relationship between the Gibbs
free energy of mixing and the concentration using the SmA–
HexB transition as an example. In this case, a quadratic
relationship was obtained (see Eq. 3.8; Fig. 2). This is the
simplest form of the Gibbs free energy according to Eq. 2.2,
obtained when a4 and a6 were taken to be constants and
T − TBOO=0 for 3(10) OBC and PHOAB (Fig. 1). On the
other hand, when T − TBOO≠0 and the coefficient a4
depends on both temperature and concentration (a6 is con-
stant), the Gibbs free energy depends on the concentration in
a more complicated form, such that a number of parameters
need to be adjusted to the experimental data. This depen-
dence is even more complicated for the other transitions (the
SmA–HexF, SmA–SmC, HexB–HexF, and SmC–HexF
transitions), since the functional forms of the Gibbs free
energy for those phases are not as simple as Eq. 2.2.

Finally, using the Landau phenomenological theory,
we developed a mean field model that describes the
general features of the bond orientational order parame-
ter, tilt angle, dielectric susceptibility, and other thermo-
dynamic quantities for the hexatic–smectic transitions of
various binary mixtures of liquid crystals using a T–X
phase diagram. The temperature and concentration
dependences of those thermodynamic quantities can be
predicted by our mean field model. By choosing appro-
priate Landau coefficients in the free energy, it is possi-
ble to construct the T–X or T–P phase diagrams. The
phase diagram as well as thermodynamic, light-scattering,
and X-ray experiments are required to accurately charac-
terize the order of transitions between hexatic and smec-
tic phases in binary mixtures of liquid crystals.

Conclusions

A generalized T–X phase diagram was constructed in this
study using the Landau phenomenological theory. In this
approach, the free energy was expanded in terms of the
order parameters y (bond orientational order parameter)
and θ (tilt angle) for smectic–hexatic transitions. The
phase-line equations derived were fitted to experimental
T–X data and the values of the fitted parameters were deter-
mined. We focused in particular on the second-order phase
lines, and the tricritical points (TCPs) were located for
SmA–SmC and HexB–HexF (or HexI) transitions.

The temperature and concentration dependences of the
order parameters y and θ were predicted from the free-
energy expansion. The concentration dependence of the
Gibbs free energy was also derived for the SmA–HexB
transition. The temperature and concentration dependences
of some other thermodynamic quantities, such as the spe-
cific heat, thermal expansion, and isothermal compressibil-
ity, can be gauged from the free-energy expansion given
here for smectic–hexatic transitions in liquid crystals. Our
predictions for the order parameters y and θ, as well as the
thermodynamic quantities that can be derived, can be com-
pared with experimental measurements of various liquid
crystals that exhibit smectic–hexatic transitions.
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